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ABSTRACT
Magnetic resonance imaging, histological, and gene analysis approaches in living and nonliving human fetuses and in
prematurely born neonates have provided insight into the staged processes of prenatal brain development. Increased
understanding of micro- and macroscale brain network development before birth has spurred interest in under-
standing the relevance of prenatal brain development to common neurological diseases. Questions abound as to the
sensitivity of the intrauterine brain to environmental programming, to windows of plasticity, and to the prenatal origin
of disorders of childhood that involve disruptions in large-scale network connectivity. Much of the available literature
on human prenatal neural development comes from cross-sectional or case studies that are not able to resolve the
longitudinal consequences of individual variation in brain development before birth. This review will 1) detail specific
methodologies for studying the human prenatal brain, 2) summarize large-scale human prenatal neural network
development, integrating findings from across a variety of experimental approaches, 3) explore the plasticity of the
early developing brain as well as potential sex differences in prenatal susceptibility, and 4) evaluate opportunities to
link specific prenatal brain developmental processes to the forms of aberrant neural connectivity that underlie
common neurological disorders of childhood.
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Disturbances in the complex connective architecture of the
human brain is a ubiquitous property of mental and develop-
mental disorders (1). Given that the large-scale systems of the
brain take form before birth (2–4) and that many brain disorders
likely have prenatal origin (5), understanding development and
modeling of brain connections across fetal life in both health
and disease is essential. Identification of both causes and
consequences of disrupted prenatal connectivity may lead to
more effective diagnosis and treatment of common neurolog-
ical and developmental disorders.

The variety of methods for examining the brain as a
collection of connected and dynamically active networks is
expansive, and yet a number of methodological challenges
and uncertainties color the field (6–9). These are described in
greater detail in the Supplement. Despite these challenges,
knowledge gained about structural connectivity, from
diffusion-weighted imaging approaches, and about functional
connectivity, from functional time series approaches, has
revolutionized our understanding of the human systems-level
brain organization. We better understand fundamental prop-
erties of normative development (10), aging (11), atypical
development and disease (12–15), brain plasticity and learning
(16), perturbations of large-scale systems by state and mood
(17), and even evolutionary principles (18). In clinical research
settings, connectomics approaches are being applied to
assessment of treatment outcomes (19), prediction of recovery
(20,21), diagnostic medicine (22,23), pharmacological
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manipulations (24,25), and preoperative brain mapping (26,27).
Overall, evaluation of the human brain through a connectomics
lens has enabled significant basic and translational discoveries
about macroscale organization of the human brain.

This review is focused on the order and timing with which
neural connections form across fetal development. Consider-
ation is given to available methodologies for studying human
fetal brain development, the relevance of prenatal brain network
development to future neurobehavioral outcomes, and
near-term opportunities for addressing unanswered questions.
In addition, in the Supplement, we highlight evidence of prenatal
environmental influences over brain development and consider
prenatal origins of sex-specific disease risk.
METHODOLOGIES FOR STUDYING HUMAN
PRENATAL BRAIN MACROCIRCUITRY

The predominant approaches for studying prenatal brain
network development are 1) to examine ex vivo fetal brain
specimens, 2) to study the preterm neonate prior to term
equivalent age, and 3) to study the living fetus in utero. Each
presents a unique set of conditions.

The ex vivo brain can be assessed in greatest detail and
with the largest collection of available techniques. This
approach has generated foundational knowledge about ge-
netic processes and physical development of the fetal brain
(28–31). Furthermore, multiple approaches—for example,
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Figure 1. Anatomical evaluation of fetuses and preterm neonates
scanned at the same postconceptional week (PCW). Representative surface
renderings and T2-weighted anatomical images are provided for (A) a fetus
at 30.0 weeks PCW and (B) for a preterm neonate, born at 28.7, scanned at
30.4 weeks PCW. (C) Group-level gyrification indices and volume measured
inside a brain mesh (mL) are plotted. Whereas volume was consistent be-
tween groups, gyrification was significantly different between groups. These
data likely reflect a combination of differential brain development out of the
womb, differential brain development of the preterm brain, and differences in
image attributes. Data courtesy of Julien Lefevre and colleagues. These
data, along with detailed comparison of cortical folding patterns in utero and
ex utero, are available in Lefevre et al. (34). For comparison of prenatal in
utero and ex utero diffusion tensor imaging, see Lockwood et al. (35).
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diffusion magnetic resonance imaging (MRI), gene expression,
and histology—can be applied to a single brain specimen to
delineate fetal brain structures at macro- and microscopic
levels and/or to examine concurrent gene expression and
structural development (31,32). These studies draw on the
strengths of each approach and provide beneficial reference
for situations in which only one measurement is possible, such
as in vivo diagnostic radiology. The challenge, however, is that
ex vivo brain specimens cannot provide information about
function, cannot be studied within a longitudinal framework,
and when obtained during the second half of pregnancy are
frequently the result of genetic or environmental abnormalities
or insults. Furthermore, brain death results in diffuse physical
and functional changes, including metabolic cellular injury and
altered vascular regulation (e.g., permeability of the blood brain
barrier), which influence extracted tissue measures and re-
sponses to surrounding conditions.

Studies of the preterm neonatal brain provide foundational
insight into late-gestation brain development and bypass some
of the technical challenges of intrauterine brain imaging.
Indeed, MRI studies of the preterm brain have generated
fundamental knowledge about the order and timing of cortical
folding, germinal matrix evolution, white matter development,
and myelination. In the preterm neonatal brain, reliable elec-
troencephalography and task-evoked stimulus response
measures are also readily attained. However, an important
consideration in studies of preterm brain development, as with
postmortem brain studies, is that it is more likely that genetic
and/or environmental hazards have influenced the brain. In
addition, extrauterine experiences of the preterm neonate in-
fluence brain development, altering and potentially acceler-
ating the course of development (33). In line with this, MRI
studies comparing neuroanatomy of age-matched fetuses and
preterm neonates have reported differences between groups
that likely reflect differences in etiology, experience/exposure,
and mechanics of imaging the fetus versus the newborn
(34,35). Those results are demonstrated in Figure 1. Further-
more, functional MRI studies report widespread differences in
neural functional systems in fetuses and neonates born pre-
term (4,36,37), calling into question representativeness of
preterm neonatal studies for understanding typical human fetal
development.

Neurosonography (ultrasound), MRI, and magnetoencepha-
lography (MEG) are the primary techniques for examining the
fetal brain in utero. Ultrasound is the mainstay for clinical
screening of fetal intracranial anatomy. Transcranial Doppler
ultrasound can also be used to evaluate blood flow in major
arteries of the fetal brain. MRI also has widespread prenatal
clinical utility and has arisen as the preferred methodology for
fetal brain research studies. MRI offers multiple modalities by
which to assess the fetal brain (e.g., metabolism, microstructure,
connectivity) [see Table 1 (38–74) and Figure 2] and has the
versatility to enable concurrent examination of the fetal body,
placenta, and maternal compartment. Drawbacks of MRI are that
scans are costly, MRI systems tend to be less available outside
of major health systems and university settings, and contrain-
dications for MRI are numerous and in pregnancy include large
body mass, as some systems are limited by 60-cm bore size.

A small number of MEG systems have been specially built to
measure fetal brain activity before birth. Fetal imaging with
Biolo
MEG involves the mother sitting at a forward or reclined angle
with a custom-fit MEG sensor array resting against her
abdomen. MEG is sensitive to very small changes in magnetic
properties of the brain that result from electrical current
changes produced by active neural populations. Because
MEG directly measures neural activity, it has very high
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Table 1. Principal Imaging Modalities With Prenatal Applications

Imaging Approach Information Obtained Representative Perinatal In Vivo Human Studies

T1- and T2-Weighted Anatomical Structural morphometry Levine et al. (38); Prayer et al. (39);
Gertsvolf et al. (40); Kyriakopoulou et al. (41)

Diffusion MRI Fiber pathway organization,
myelination, brain anatomy,
and cellular morphology

Jakab et al. (42); Schneider et al. (43);
Huang et al. (44); Kaspirian et al. (45);
Mitter et al. (46); Righini et al. (47)

BOLD Functional MRI Hemodynamic changes
associated with neuronal
activity; placental oxygenation

Schopf et al. (48); Thomason et al. (49);
Jakab et al. (50); Fulford et al. (141);
Sinding et al. (51); Blazejewska et al. (52)

Perfusion and Flow Quantity of blood moving through
capillaries in mL/s/g of
tissue; bulk motion

De Vis et al. (53); Ouyang et al. (54);
Jakab et al. (55)

Susceptibility-Weighted Imaging Iron content, myelination,
venography, oxygenation

Neelavalli et al. (56,57); Yadav et al. (58)

Magnetization Transfer Myelination; vascular volume Ong et al. (59); Nossin-Manor et al. (60)

NMR Spectroscopy Metabolite spectral peaks Wolfberg et al. (61); Girard et al. (62);
Kok et al. (63); Bluml et al. (64);
Limperopoulos et al. (65)

Magnetoencephalography Cortical function Fehlert et al. (66); Morin et al. (67)

Ultrasound Intracranial anatomy, behavior
(e.g., spontaneous limb and eye
movement, response to stimuli);
cerebrovascular dynamics (e.g., CBF
velocity in the anterior, middle, and
posterior cerebral arteries)

Inoue et al. (68); Chang et al. (69);
Pugash et al. (70)

A number of modalities have been developed for studying the fetal and preterm human neonatal brain. In addition to modalities summarized here,
perinatal quantitative MRI [valuative rather than relative estimates; minimize influence of machine and operator variation; cf. Grossman et al. (71);
Studholme (72); Ferrie et al. (73); Clouchoux et al. (74)] is another notable area of active development.

BOLD, blood oxygen level–dependent; CBF, cerebral blood flow; MRI, magnetic resonance imaging; NMR, nuclear magnetic resonance.
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temporal resolution. In contrast to functional MRI, which is
reliant on detecting hemodynamic changes that lag 3 to 6
seconds behind neural activity, MEG detects electrical activity
of neurons on the order of milliseconds. Disadvantages of fetal
MEG are, again, expense, accessibility, and that MEG is not as
good as functional MRI at precisely localizing brain activity.
New frontiers in fetal brain imaging are discussed further in the
Supplement.

PRENATAL BRAIN DEVELOPMENT

Overview of Emergent Brain Structure

The most rapid growth of the brain occurs in utero and in the
first 20 postnatal weeks. At birth, the majority of systems that
will compose the network architecture of the adult brain are
already present (2–4). Proliferation of neural precursor cells,
neuroblasts, occurs between the 4th and 20th weeks of
gestation, whereas the production of glioblasts, precursors of
nonneuronal cells, begins at about 19 weeks and continues
after birth. The number of neuroblasts produced during human
gestation exceeds the number of neurons in the adult brain
and spinal cord. With time, these cells migrate, grow pro-
cesses, and form synaptic connections. Synaptic density
rapidly increases through combined processes of synapto-
genesis, synaptic reorganization, and the formation of den-
drites and dendritic spines. The genetically driven
overproduction of dendrites, dendritic spines, and axons at
this stage of life results in an excess of cells and synapses
throughout the brain. Synaptic connections between select
cells will be enforced through activity-dependent processes
42 Biological Psychiatry July 1, 2020; 88:40–50 www.sobp.org/journa
that alter cellular genetic and chemical signaling. In contrast,
others of these cells will die and/or the connections between
them will be remodeled (75–78). Processes driving the pruning
and refinement of neural circuitry have been studied since the
1930s and 1940s (79), with notable contribution from Donald
Hebb, who, based on seminal contributions regarding emer-
gent neural circuitry and the basis of conscious learning, is
credited for the adage, “cells that fire together, wire together”
(80). During Torsten Wiesel’s Nobel Lecture in 1981, he
emphasized that is not only activity or disuse that influences
development of neural connections, but also competition, as
experimentally it has been shown that even in a deprivation
situation, cells can grow normally when competition is
removed (81,82). These fundamental premises remain highly
influential in fields of developmental physiology and neuro-
anatomy, as contemporary studies continually reaffirm the
tight coupling between structure and function in development
and maintenance of brain circuitry (83).

Development of fetal brain macrostructure follows a pre-
dictable timetable. MRI studies show that by approximately
week 9, growth of the corpus callosum is initiated at 2 distinct
loci that fuse between weeks 13 and 14 (84). By the end of the
4th month of gestation the first sulci appear. By the 22nd week
of pregnancy, the interhemispheric fissure, the callosal sulcus,
the parieto-occipital fissure, and the hippocampal fissures are
present. By week 25, the central sulcus emerges at the lateral
surface and with time extends anteriorly toward the midline
until it abuts the interhemispheric fissure at approximately
week 30. By week 33, all primary sulci are present. Garel et al.
(85) have studied these processes in exquisite detail and
l
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Figure 2. Multimodal in utero fetal magnetic resonance imaging. Images correspond to fetal anatomical reconstruction and segmentation (upper left); fetal
magnetic resonance spectroscopy (upper right); fetal thalamocortical resting-state functional magnetic resonance imaging functional connectivity (lower left);
magnitude and phase images from fetal susceptibility weighted imaging (lower right): arrowheads superior sagittal sinus (upper) and thalamostriate vein (lower).
(Upper left) Anatomical images courtesy of Xiaojie Wang at Oregon Health Sciences University. (Upper right) Magnetic resonance spectroscopy images
courtesy of Stefan Bluml and Vidya Rajagopalan at Children Hospital Los Angeles. (Lower panels) Functional magnetic resonance imaging and susceptibility
weighted imaging data are from Moriah Thomason and Jaladhar Neelavalli and were acquired at Wayne State University. Cho, choline; Cr, creatine; Lac,
lactate; ml, mobile lipids; NAA, N-acetylaspartate; ppm, parts per million.
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conclude that the best period to study gyration is between 28
and 34 weeks, as this is the period of the most rapid processes
of sulcal development and, thus, the period when individual
variation is most likely to be detected.

Sequence and Timing of Prenatal Fiber Tract
Development

Histochemical and diffusion tensor imaging (DTI) studies of
the fetal brain in vitro (32,44,86–88) and in utero (45,89–96)
and in preterm neonatal brains (97–100) provide insight into
the temporal order in which physical structures connecting
Biolo
different brain regions emerge across fetal development.
Microscale myelination of the fetal brain is detectable as early
as 20 weeks in the medial longitudinal fasciculus of the me-
dulla and pons. Rapid myelination occurs over the first 2
years of human life, followed by a far more gradual and pro-
tracted increase in myelin and fiber bundles that continues
well into the third decade of human life (101). This property of
early rapid development, followed by prolonged maturation,
is uniquely human and may reflect conservation of metabolic
energy to support parallel demands of both body and brain
growth (102).
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Figure 3. Schematic representation of prenatal fiber tract development across weeks of gestation. Initial stages include corticospinal development and
nascent cross-hemispheric connections. Intrahemispheric local connectivity is then followed by development of thalamocortical afferents. In later stages, the
commissural and thalamocortical fibers extend to the cortex and long-range association fibers extend within each hemisphere. PCW, postconceptional week.
[Figure adapted with permission, from a comprehensive review by Keunen et al. (103).]
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Major fiber pathways connecting distant brain regions begin
to take form at the end of the first trimester and provide a
scaffold for the development of long-range connections and
large-scale neural systems. Projection fibers including the
corticospinal tract extending from the internal capsule are the
earliest to develop, followed by commissural fibers of the
corpus callosum by week 13. Within-hemisphere association
fibers, including the uncinate and inferior fronto-occipital
fasciculi, also form early, followed by inferior longitudinal
fasciculus, cingulum, and fornix. Significant development of
long-range connectivity occurs in the third trimester. During
that time, thalamocortical and callosal fibers will extend to
innervate cortical regions, and intrahemispheric long-range
association fibers will develop. Overview of these stages is
provided in Figure 3 (103).

An active area of scientific inquiry is to develop MRI DTI
methodology for examining the human fetal brain in utero. As
mentioned herein, and articulated well by others (46), exami-
nation of the brain after death is complicated by alterations in
tissue microstructure, cellular damage, brain edema, loss of
supporting structures such as the skull and the meninges, and
the fixation process itself. In utero tractography of the living
human fetus is a major objective because it allows study of
more normative conditions and enables examination of as-
sociations between 3-dimensional morphology of fiber tracts
and concurrent conditions of the pregnancy, both of which
are critical for understanding causes of neurological injury and
disease. At present, successful in utero tractography has
been achieved in several major tracts. However, slight dif-
ferences in intrauterine and ex vivo results have been noted;
tracts that have been successfully reconstructed in utero
appear to develop on a slower timetable and have different
characteristic shapes (90). Furthermore, data loss is a major
consideration. In particular, it is difficult to achieve robust
results uniformly across brain regions, and the proportion of
scans lost to image artifacts and fetal movement can exceed
50%. However, this is an emergent field and recent de-
velopments in intrauterine DTI are promising. New studies
have addressed replication (42,104) and cross-validation
(35,91), which provide a basis for assessing reliability and
accuracy of fetal DTI metrics. Furthermore, advances in fetal
diffusion MR image acquisition and reconstruction, such as
direction-sensitive slice-to-volume correction (35,105), are
leading to higher success rates.
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Functional Network Development Beginning In
Utero

Patterning of neural circuitry begins early in development,
before many of the sensory organs are functional. Activity is
initially incoherent and unorganized; however, as neuroblasts
mature, migrate, and form connections, a rich repertoire of
spontaneous activity patterns emerge (106,107). Spontaneous
neural activity reverberates through circuits in the form of
propagating waves that reinforce appropriate connections and
trigger essential activity-dependent signaling processes.
Neural activity recorded using electroencephalography in
preterm neonates has revealed regular occurrence of inter-
mittent high amplitude bursts known as spontaneous activity
transients. Spontaneous activity transients emerge during
midgestation, appear to originate in temporal and insular re-
gions (108,109), and, importantly, predict more favorable brain
and behavioral outcomes (110). With maturation of thalamo-
cortical afferentation, beginning at approximately week 24, and
dissolution of the temporary subplate, more complex electrical
signals emerge and the first evoked potentials may be
recorded (111). In parallel, the fetus begins to respond to
nociceptive signals, light, speech, and sound (112–115).

New knowledge about the order and timing with which the
human fetal functional connectome takes form has arisen from
recent fetal functional MRI resting-state functional connectivity
(RSFC) studies. The first of these studies confirmed what has
been observed ex vivo and in animal studies, that large-scale
networks take form in the prenatal period and that inter- and
intrahemispheric connectivity increase with advancing gesta-
tional age (48,49). A study by Jakab et al. (50) also showed
peak increases in connectivity between gestational weeks 24
and 31, with peak inflection at 27 weeks, and these in-
vestigators highlight that this corresponds with the period of
maximum growth of the human fetal subplate and increasing
synaptogenesis in the cortical plate that occur in this devel-
opmental window. These were important initial studies
because they provided proof of concept that despite the
technical and interpretive challenges of fetal MRI (116,117), it is
possible to measure global properties of prenatal brain func-
tional development in healthy human fetuses. Fetal RSFC
studies that have followed have provided evidence that
strength of long-range connectivity linearly increases with
advancing fetal age, interhemispheric connections show
sigmoidal growth, and cross-hemispheric homotopy follows
l
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overlaid posterior-to-anterior and medial-to-lateral gradients
(49,50,118). A study of fetuses that subsequently went on to be
born preterm compared with age-matched term-born fetuses
demonstrated that differences in neural connectivity observed
in the preterm brain begin before delivery (37).

Fetal RSFC studies using graph models and network-based
inference approaches confirm that the fetal brain is organized
with adultlike network properties. Van den Heuvel et al. (119)
isolated fetal RSFC hubs, or highly connected nodes within the
brain network, in several areas of the temporal lobe, the pre-
central gyrus, and the cerebellum (119). These investigators
note that these hubs share partial spatial overlap with
observed hubs in the neonatal brain and that these are among
the first areas of the brain to myelinate. A recent study by Turk
et al. (120) compared the overall brain connectome structure in
adults and in fetuses during the second and third trimesters
and observed a robust degree of organizational overlap of
61.66%. The fetal connectional “blueprint” included 4 func-
tional modules, compared with 5 in the adult group. This study
also confirmed that the fetal connectome shows significant
rich club organization, such that central nodes communicate
preferentially with one another, enhancing total network effi-
ciency (120). Additional fetal RSFC studies using network ap-
proaches have shown that modularity decreases and efficiency
increases in the fetal brain network with age (120,121).
Decreased modularity is likely to reflect initial outgrowth of
projections and formation of connections. Later in develop-
ment, neural systems will be pruned and connections refined
such that networks will become more specialized and segre-
gated, which is reflected in prior accounts of increased
modularity and efficiency across child development (122,123).
Together these investigations demonstrate the presence of a
functional connectomics blueprint before birth that may be
foundational to future brain health.
PRENATAL ORIGINS OF COMMON
NEURODEVELOPMENTAL PROBLEMS

Human brain development is protracted by comparison to
other species. As a result, we are a species with a long early
window of plasticity, during which we remain both open to
programming by the environment and primed for experiential
learning. When the developmental program is thrown off
course, due to either genetic disposition or environmental
insult, or these in combination, the brain is well equipped to
attempt to compensate. There are many examples in the
literature of animals administered experimental brain lesions in
windows of high developmental plasticity, and in these studies,
the rewiring of neural systems to work around the injury is
striking (124). In humans, these resilient responses to miswir-
ing events or early brain injury are also evident (33). The
challenge, however, is that compensation is not the same as
correction, and what may arise from an early injury or deviation
in developmental wiring may have long-ranging implications
that are not immediately evident (125).

Considerable research has begun to address differences in
neuroconnectivity that underlie common neurodevelopmental
disorders. For example, a number of studies have shown that
autism spectrum disorder (ASD) is associated with altered con-
nectivity between and within regions associated with social
Biolo
cognition and also with cross-network integration (126). Dyslexia
has been linked to weaker connectivity in the posterior reading
network, altered connectivity of the visual word form area, and
reduced functional segregation between the default mode
network and frontoparietal control regions (19,127). Widespread
neural circuitry appear to be affected in attention-deficit/
hyperactivity disorder, leading to suggestion that the complexity
of attention-deficit/hyperactivity disorder miswiring parallels the
heterogeneity seen in attention-deficit/hyperactivity disorder
behavioral phenotypes (19,128). Prior reviews address the
development of neural networks across a number of childhood
neurological disorders in greater detail (1,10,129).

The challenge in investigations of neural underpinnings of
common neurological diseases of childhood is that results
across studies are mixed and at times contradictory. Uddin
et al. (130) address mixed results in ASD MRI studies and
highlight that in contrast to increased connectivity in children
with ASD, adults and adolescents tend to show diminished
connectivity. Solomon et al. (131) report differential effects in
older and younger ASD groups as well. These findings have led
to the suggestion that some of the disparities across the extant
literature may be resolved by placing findings in a develop-
mental framework, explicitly evaluating age and pubertal sta-
tus. Hernandez et al. (132) arrived at a related conclusion in
their review of ASD neuroconnectivity; they suggested that
vast genetic and phenotypic heterogeneity characteristic of the
disorder likely contribute to contradictory results. Taken
together, much has been gained from developmental imaging
studies, including enhanced understanding of developmental
plasticity and growth and also insight into neural correlates of
disease. Yet, many would agree that currently, clinical imaging
biomarkers for early human diseases are absent. It is difficult to
resolve whether this is because disorders may lack specific
and sensitive neural biosignatures and/or whether variation in
approaches taken in human imaging studies are stalling clinical
progress. To the latter, in the 1962 words of Teuber and Rudel
(133), “it is unfortunately true that the effects one observes are
largely a function of the questions that are being asked.”

With advances in early life MRI it may soon be possible to
go back farther and understand where the wiring events
deviate from normal to give rise to intellectual problems and
disorders of childhood. In a longitudinal framework it is
possible to bridge early connectome development with later
developmental outcomes. A recent study by Wolff et al. (134)
demonstrated that measures of connectivity in the corpus
callosum and cerebellar pathways at age 6 months predicted
repetitive behaviors and sensory responsiveness, respectively,
at age 2 years. A recent study by our group (135) demonstrated
that even in utero it is possible to detect differences in con-
nectivity that relate to subsequent infant motor outcomes at
age 7 months. Using longitudinal approaches such as these, it
will be possible to begin to tackle critical questions about how
variation in prenatal brain development relates to long-term
neurobehavioral outcomes. This is a critical research direc-
tion, because in the future, perinatal imaging biomarkers could
inform diagnoses, inspire novel intervention strategies, and
serve as a new basis for monitoring treatment progress.

Two principles that make linking aberrant neural develop-
mental processes to either concurrent or future outcomes are
interdependency and relative timing. Across development,
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Figure 4. Region-specific rates of fetal brain matu-
ration. These data presented by (A) Huttenlocher and
Dabholkar (142), (B) Jakab et al. (50), and (C) Ouyang
et al. (143) depict prenatal synaptic density, functional
connectivity and fractional anisotropy, respectively,
across different regions of the brain. Line colors are
consistent across data sets and demonstrate varied
prenatal maturational time courses across regions and
across modalities. Interactions between regions are
likely to be influenced by this innate property of het-
erogeneous regional development. Scale bar in panel
(A) = 1 mm. FA, fractional anisotropy; FC, functional
connectivity.
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different brain regions mature at different rates (see Figure 4),
and as a result, interactions between regions change over
time. To alter development in a single region at a single time
point is likely to spur both immediate and long-term changes
that are not obviously causally related. It is as if the brain were
a system of levers and pulleys; removal of a gear will shift the
balance in all that remain. Furthermore, the association across
gears is time dependent. When one removes a gear at different
times and in different places, then the variety of possible
outcomes is multiplied.

FUTURE DIRECTIONS

With increased ability to noninvasively measure and model
maturation of the human fetal brain, new opportunities surface.
Beyond the core necessity of establishing normative properties
46 Biological Psychiatry July 1, 2020; 88:40–50 www.sobp.org/journa
of human development, there is increasing interest in isolating
deviations from typical brain development that precede
behavioral problems of childhood. By identifying and moni-
toring fetuses at elevated risk of future developmental
problems—for example, those at increased risk for preterm
delivery or with congenital defects—we can isolate patterns of
neural development that differentiate those that subsequently
exhibit neurodevelopmental problems. Such biomarkers have
the potential to inform treatment decisions and novel inter-
vention strategies and could serve as the basis for monitoring
progress following intervention. Overall, a major future direc-
tion for basic neuroscience and perinatal medicine is to
perform longitudinal studies that will anchor the meaning of
observed fetal brain effects in the context of individual human
developmental trajectories.
l
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Advances in noninvasive imaging can also serve to better
bridge human and animal studies. Animal models inform much
of what we understand about human development, yet build-
ing homology between animal and human studies can be
challenging (136–138). By unveiling capacity to evaluate the
human brain before birth, we are better equipped to perform
parallel human and animal studies that capitalize on comple-
mentarity of these approaches. For example, MRI could be
used to establish the order and timing with which thalamo-
cortical connections emerge over human gestation, and this
information could be referenced to genetic variation, intra-
uterine exposures, and/or later outcomes. By comparison,
animal studies could be used to isolate chemical and/or mo-
lecular processes that are necessary for the formation of tha-
lamocortical circuitry (cf. 139,140) and/or to study the effect of
chemical, hormonal, or micronutrient manipulations on this
circuitry. Combination of these approaches yields mechanistic
and causal understanding of human growth that could not be
achieved using either approach in isolation.

Another significant opportunity in the future of fetal imaging is
to pair advanced imaging methods with progress in acquiring
and analyzing biological and environmental “omics” data
obtained during pregnancy. Materials obtained from the human
body can report on past and present gene and chemical activity
as well as profile microorganisms inhabiting body material. In
this way, samples obtained during pregnancy can be used to
assess numerous bodily processes, such as gene transcription,
inflammation, and hormone activity, and also to profile micro-
nutrients and chemical products absorbed from the environ-
ment. Some of the currently available methods can even report
on fetal systemic responses; for example, fetal exosomescanbe
isolated in maternal blood, and as tooth buds (future baby teeth)
form in the fetal mouth they record information in a temporal
order (like rings of a tree) that can later be analyzed. Future
studies will bridge this fundamental biomarker data with mea-
sures of fetal brain development to attain understanding about
the regulatory influence of, or programming by, the maternal
body over fetal brain growth and development.
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